Temporality Transfer Between Media

Film Temporal Quality Appropriation Through Shot Analysis & Camera Reconstruction

Mengfei Wang, Xiaobi (Iris) Pan
SCI 6432: Quantitative Aesthetics: Design as Signal

Instructed by Panagiotis Michalatos

Abstract

Our project aims to understand the temporal quality of a film and transfer that into other media.
For each film, its temporality is examined at different levels of resolution---from the entire film, to a
selected group of shots, to a single shot. Then we try to reproduce the same temporality in a new

context. In this case, architectural visualization is chosen as our application.

Partl: Shot-Cut Finding & Shot Classification

The first step is to identity shot cuts in a film to help us understand the overall film structure.
Using openCVsharp in Visual Studio, our program was able to spot shot cuts when the total
color difference between two successive frame screenshots exceeds a certain threshold (in our
case, 30.00) and auto-save the frames of each continuous shot into separate folders. To
improve computational efficiency, frame screenshot resolution was reduced to 320*240.

int smallX = 320;
int smallY = 240;
Mat opFlow = new Mat(new OpenCvSharp.Size(smallX, smallY), MatType.CV_32FC2);

1280

Fig.1 reduce frame resolution for computational efficiency

— TR B i . d
B ¥
PN L
il L. ‘Hk 3
‘ EEEE =[] SEEE] Ny 7 ;)
Z H | 1 - "r—' . 'i ”’
One Next = g CEEEEL N | L : 4 [T i
Frame Frame , Lol Ko, 8 e JEEaE
int dr = Math.Abs(col2[0] - col1[0]); ’ AR s - =
int dg = Math.Abs(col2[1] - col1[1]); B MERED G A
int db = Math.Abs(col2[2] - col1[2]); : EEROEEENREEES : ~
K} 12 SN] | i i
int total = dr + dg + db; NG I NERREES IBIER S my ! | !
totaldiff += total; 1 i RES | I | | ‘

totaldiff > 30.00

Fig.2 calculate frame total difference for shot cut finding

The movie we chose as subject for study belongs to the genre of Architecture Documentary,
Peter Zumthor The Thermae of Stone. (25'32" Whole Film). It was divided into 97 distinct shots
by our algorithm.

M — Yy YRR R RERNNURNRRNRNRNE

REREREEEREREREERERERERREE
REREREERERERERERREREERN
EENEREREEEREREEERERERRERE
EERERERER

Fig.3 shot cut finding result: screenshots of each shot in separate folders

Then we classified the shots manually (though we hope to enable Al classification in the future)
into 4 categories, shots about the architecture itself, shots about the architect, shots about the
architecture model, and shots about others (interview, historic materials, etc.) We made an
interactive timeline of shot categorization as below to illustrate the distribution of each
category of shots in the film in a temporal sequence. Since we were only interested in the shots
about the building itself, other categories were filtered out.

o 2 3 . s 3 7 s a 10 W iz B P 15 16 b 18 1 2 21

B R 3 0T U BB W RDE RN ERRRERMEENN
-

2 -3 24 > r-] & = - x 3 » 3 » 35 » E 4 » » “ 41 2 4
4 ¥ A AR AR RMDEDNWTTTETEDREEN
“ L4 45 a 4“2 L] 0 51 2 53 4 5 % 7 38 » % 6 aQ 63 o

% 6 “ » n ”: n 7 5 ® ” ® ™ £ 8 @ s o s i 8
4 " " R R ®om | | :

® s £ $ 02 3 ”. s #

Other Architecture Architect Model

Fig.4 shot categorization by content

Part2: Static Diagram of Interested Shots

For the architecture-related shots, we produced a static diagram for each of them to
understand the basic film properties (light/color/movement...) in each shot and their change
with time. Rhinoceros, Grasshopper, and CH# were used to visit each frame picture in a folder,
cut a 1-pixel-wide section at its middle and place the sections chronologically next to one
another. Thereby, we got a miniature of each shot that understored its time-related
cinematographic qualities.

First Frame

e e

. ™ ;‘.; .'
I el | 11

-y

Fig.5 static diagram for all the architecture-related shots
Section Variation/Duration

;‘QOG SeoomuwEa +© ShotIndex | First Frame

Q0G0 00D SS K E S 4 prop C

— T (0 ey = P

A B-e-w = R oo ; .
. ”

ShotIndex | First Frame Section Variation/Duration

3I
5

ShotIndex | First Frame Section Variation/Duration

9 =
| fort
= iy

Fig.6 grasshopper screenshot & single shot diagram illustration

L1

Looking at these static shot diagrams, we found that the temporal variations of film come from
two aspects: the movement of camera and the movement of object/human, which spores 4
combinations.

Object/human still Object/human Moving
Camera Still 1 2
Camera Moving 3 4

Table 1: four combinations of camera/object movement

In our case, since it is hard for our software to analyze human motion, we decided to focus only
on the camera motion. So we zoomed in on the shots of the 1%, and 3™ combination.

]
\‘F

BT
el

Fig.7 target group of shots to study its temporality: shot 16th -19th

Finally, we selected Shot 16%"- 19t as our target group of shots to derive temporality from.
The sequence has 2 static shots (1t combination, table 1) and 2 moving shots (3" combination,
table 1). The movement and staticity within each shot, as well as their chronological
composition as an entity, became the focus of our study.

Part3: Camera Interpretation & Reconstruction

We used a tool called structure from motion (VisualSFM) to decipher the camera in each shot.
By feeding the software a continuous group of frames, it was able to run feature matches
between different viewpoints to interpret the camera position, angle, and focal length in each
frame, then output the 3D camera point clouds and the csv files.

INPUT METHOD OUTPUT

S
g
g
¥

. 1
"
N
N
"
/

\ I‘%I
¥
!

8
&
3
]
8

il
A
‘.<
"
!

&
g

A

H
§
7
3
£

§

Ol N E
2420 2425 2430 2435 2440 2445 m
- - - - - Visual Studio
2450 2455 2460 2465 2470 2475
EEEERR .
EEEEEE < unity
2510 2515 2520 2525 2530 2535
N N BN BN BN =N
Screenshot Images Visual SEM, C# Files - Camera 3D point cloud,
Shot 16 -19 http://cowu.me/vsfm/ Camera NVM file, Unity Project

Fig.8 workflow in camera interpretation & reconstruction

L. VisualSFM - [Sparse Reconstruction] - [0] - [] =] X
File SfM View Tools Help ~

g B oo & L3tk Xyt n $¥%A50 285: [_3415] sees 11605 (+135) 30 ponts
Estimated Focal Length [892](2.79N]

‘ # 1299 projs (90 pts and 6 merges)

. . ’ SKIP: 45 cams, 7517 points, 76153 projs

s . PBA: 4037 30 pts, 20 cams and 37406 profs...
PBA: 0,222 -> 0.194 (1LMs in 0.04sec)
#points w/ large errors: 1

g Sunstable ponts removed: 1

- . Focal Length : [892.256]->([895.377]

S Radial Distortion : [-0.229 -> -2]

~ A Estmated Focal Length [800][2.SON]
~ ~ . . # 1028 projs (7 pts and 0 merges)
e e $ SKIP: 45 cams, 7551 points, 76312 projs
g > PBA: 4001 30 pts, 20 cams and 38255 projs...
~ . PBA: 0,201 -> 0.190 (1LMs in 0.05sec)
- . . #ponts w/ large errors: 3
oz - - Z s #unstable ponts removed: 1

#86/86: 1545 projs and 41 pts added.

i PBA: 11571 30 pts, 86 cams and 115050 projs...
- - PBA: 0.193 -> 0.186 (1LMs in 0.07sec)
#unstable ponts removed: 15
PBA: 11556 30 pts, 86 cams and 114990 projs...
\d PBA: 0.186 -> 0.185 (1 LMs n 0,05sec)
#unstabie points removed: 20
Focal Length : [800.328]->(823.847]
Radial Distortion : [-0.136 -> -1]
#87: [_3405] sees 13085 (+130) 3D points
Estimated Focal Length [687][2. 15N]
1036 projs (23 pts and 0 merges)
SKIP: 45 cams, 7599 points, 76931 projs
PBA: 3972 30 pts, 20 cams and 39093 projs...
Thread started at 21:30:13; Press X to refresh timing. v

Fig.9 VisualSFM screenshot: sparse reconstruction

Fig.10 VisualSFM camera interpretation result: Shot 17th, 18th

Once the camera data was retrieved for the moving shots, we wrote C# script in unity to
process the CSV list, sort it in temporal order (in our case we used the frame index, the first
column of the CSV list, to sort), and store the focal length, Quaternion angle, and position of a
series of cameras into a list of objects in a class called “Mycamera”. Then the update() function
assigns the Main Camera in unity the corresponding position, angle and focal length from the
list of cameras at different moments. In this manner, we managed to reconstruct the camera
movement in shot 17" and 18,

D

[peteZumbornvm &3 |

NVM_V3

168
Peter"Zumthor_3275.3p
Peter”"zumthor_338
Peter"zumthor_328

7 Ppeter"zumthor_329
Peter"Zumthor_328
Peter"zZumthor_329
Peter"zZumthor_330
Peter"zZumthor_330
Peter”Zumthor_331
Peter"Zumthor\ 3315.ip

885.936462402
1296.98522949

0.982116203385 -0.0701936094616 0.0347860620028 0.171203560965 0.571207910051 -0.805056975895 -5.64834363473 -0.00620188519403 0
0.979823121209 -0.0487638915927 0.0812034528022 0.175996094445 0.23636781838 0.0281812317337 -10.41319047 -0.403479747829 0
905.614929199 0.981806730071 -0.0663219703188 0.0454721961519 0.172015184276 0.547707340921 -0.764568938404 -5.8757972222 -0.0303828559444 0
[0
0

g

g

g

g 971.403991699 0.981272221652 -0.0588842977603 0.059686202143 0.173421935857 0.478830710474 -0.604791988866 -6.62952731712 -0.0738956266862 0
g 984.128662109 0.981632249122 -0.0625277209046 0.0517121693566 0.172667397227 0.548629195385 -0.630663116126 -6.76842078406 -0.0643896434354 0
g
g
g
g
a

992.19720459 0.98089262641 -0.0559999178222 0.0666263889282 0.173996099652 0.443653201797 -0.527205518947 -6.86701678718 -0.107620385211 0
1608.51452637 0.981419731166 -0.0557049199701 0.0592490540157 0.173787046192 1.04132161321 0.230135309894 -13.8941986186 -0.66963466331 0
985.455444336 0.979493278331 -0.055352017€358 0.0827933161347 0.175140213924 0.413322131374 -0.429975082129 -6.77942434544 -0.123563520546 0
1084.1328125 0.980219350724 -0.0531522851795 0.0757235499467 0.174960071616 0.275652011265 -0.299557871953 -7.94678604334 -0.206725445548 0
1092.11303711 0.979778370545 -0.0525139465545 0.0808422576419 0.175332005847 0.27588825496 -0.28032894211 -8.03281703883 -0.179456140083 0

Focal Length (m), Quaternion WXYZ (angle), Camera Center Position,

Fig.11 camera csv file exported from VisualSFM (in the format of NVM)

processing the CSV file, sort it,

void Start
0 storing information about the camera into a class called “Mycamera”

using (StreamReader reader = new StreamReader(file)) 5
{ using system;

. using system, Collections.Generic;
reader.ReadLine(); using System. 10;
reader.ReadLine(); using tnityEngine;
reader,ReadLine(); using System.Text.RegularExpressions;
while (reader.Peek() != -1)
: public int order { get; set; }
. N . . . public float Focalength { get; set;)
sl_:rlng line = reader.RgadLme(), . public quaternion quat { get; set; }
line = Regex,Replace(line, @"\s+", " "); : public vectors Position { get; set; }
var values = line.split(' '); ' 5 public Mycamera(int order, float focalength, Quaternion quat, Vectors position)
. B
. . : {
string beforetrimmed = values[@]; : Order = order;
N Focalength = focalength;
' . Quat = quat;
if (t}eforetr‘lmmed.Length <15) : Position = position;
continue; ')
string trimmed = beforetrimmed.Substring(15, 5); BN)

string substring = trimmed.split(’.')[e];
int numval = Int32.Parse(substring);

cameralist.Add(new Mycamera(numval, float.Parse(values[1]),
new Quaternion(float.Parse(values[3]), float.Parse(values[4]), float.Parse(values[5]), float.Parse(values[2])),
new Vector3(float.Parse(values[6]), float.Parse(values[7]), float.Parse(values[8]))));

cameralist.Sort(delegate (Mycamera c1, Mycamera c2)

{

return cl.0rder.CompareTo(c2.0rder);

i
)i

void Update() scripts _to change camera position, angle and focal length
according to the csv list....

if (i < cameralist.Count - 2)

time_t += Time.deltaTime;
float perc = time_t / lerpTime;

//smooth viewpoint setting along the tragectory

transform.position = vector3.Lerp(start, cameralist[i].Position, perc);
transform.rotation = Quaternion.Lerp(startangle, cameralist[i].Quat, perc);
Camera.main.fieldofview = Mathf.Lerp(startflength, cameralist[i].Focalength, perc);

if (time_t >= lerpTime)
{
//i+=2;
time_t = o0.of;
start = cameralist[i].Position;
end = cameralist[i + 1].Position;
startangle = cameralist[i].Quat;
endangle = cameralist[i + 1].Quat;
startflength = cameralist[i].Focalength;
endflength = cameralist[i+1].Focalength;
// Vector3 c = start - end;
// lerpTime = c.magnitude/ speed;
lerpTime = 0.3f;
it++;

Fig.12 main parts of unity C# code to process the CSV data and control the Main Camera

In the meantime, for the static shots 16™ and 19, we place the camera in corresponding
positions and angles manually in unity for the same period as in the movie. Eventually, we
compiled the two parts of csv files and achieved a continuous mapping from the movie clip to
our unity architectural visualization application.

Fig.13 unity minimalist architectural scene setup as a demonstration

[‘D 0:15/ 0:46

Fig.14 screenshot of the result video: transfer of film temporality into architectural visualization

In the future, we hope this technology can be applied in the VR realm for audiences to
experience a building/space through the lens of a film. The camera motion sequence from an
outstanding film can thus to translated into a new setting. Also, this can be utilized as a means
of architectural design presentation for designers and architects.

Another potential would be to investigate other film properties such as light, color, or sound
from a temporal angle, and then translate those aspects of film temporality into new areas.

