

 Temporality Transfer Between Media

 Film Temporal Quality Appropriation Through Shot Analysis & Camera Reconstruction

 Mengfei Wang, Xiaobi (Iris) Pan

 SCI 6432: Quantitative Aesthetics: Design as Signal

 Instructed by Panagiotis Michalatos

 Abstract

Our project aims to understand the temporal quality of a film and transfer that into other media.

For each film, its temporality is examined at different levels of resolution---from the entire film, to a

selected group of shots, to a single shot. Then we try to reproduce the same temporality in a new

context. In this case, architectural visualization is chosen as our application.

Part1: Shot-Cut Finding & Shot Classification

The first step is to identity shot cuts in a film to help us understand the overall film structure.
Using openCVsharp in Visual Studio, our program was able to spot shot cuts when the total
color difference between two successive frame screenshots exceeds a certain threshold (in our
case, 30.00) and auto-save the frames of each continuous shot into separate folders. To
improve computational efficiency, frame screenshot resolution was reduced to 320*240.

 Fig.1 reduce frame resolution for computational efficiency

 Fig.2 calculate frame total difference for shot cut finding

The movie we chose as subject for study belongs to the genre of Architecture Documentary,
Peter Zumthor The Thermae of Stone. (25’32’’ Whole Film). It was divided into 97 distinct shots
by our algorithm.

 Fig.3 shot cut finding result: screenshots of each shot in separate folders

Then we classified the shots manually (though we hope to enable AI classification in the future)

into 4 categories, shots about the architecture itself, shots about the architect, shots about the

architecture model, and shots about others (interview, historic materials, etc.) We made an

interactive timeline of shot categorization as below to illustrate the distribution of each

category of shots in the film in a temporal sequence. Since we were only interested in the shots

about the building itself, other categories were filtered out.

 Fig.4 shot categorization by content

Part2: Static Diagram of Interested Shots

For the architecture-related shots, we produced a static diagram for each of them to
understand the basic film properties (light/color/movement…) in each shot and their change
with time. Rhinoceros, Grasshopper, and C# were used to visit each frame picture in a folder,
cut a 1-pixel-wide section at its middle and place the sections chronologically next to one
another. Thereby, we got a miniature of each shot that understored its time-related
cinematographic qualities.

 Fig.5 static diagram for all the architecture-related shots

 Fig.6 grasshopper screenshot & single shot diagram illustration

Looking at these static shot diagrams, we found that the temporal variations of film come from

two aspects: the movement of camera and the movement of object/human, which spores 4

combinations.

 Object/human still Object/human Moving

Camera Still 1 2

Camera Moving 3 4

 Table 1: four combinations of camera/object movement

In our case, since it is hard for our software to analyze human motion, we decided to focus only

on the camera motion. So we zoomed in on the shots of the 1st, and 3rd combination.

 Fig.7 target group of shots to study its temporality: shot 16th -19th

 Finally, we selected Shot 16th- 19th as our target group of shots to derive temporality from.
The sequence has 2 static shots (1st combination, table 1) and 2 moving shots (3rd combination,
table 1). The movement and staticity within each shot, as well as their chronological
composition as an entity, became the focus of our study.

Part3: Camera Interpretation & Reconstruction

We used a tool called structure from motion (VisualSFM) to decipher the camera in each shot.

By feeding the software a continuous group of frames, it was able to run feature matches

between different viewpoints to interpret the camera position, angle, and focal length in each

frame, then output the 3D camera point clouds and the csv files.

 Fig.8 workflow in camera interpretation & reconstruction

 Fig.9 VisualSFM screenshot: sparse reconstruction

 Fig.10 VisualSFM camera interpretation result: Shot 17th, 18th

Once the camera data was retrieved for the moving shots, we wrote C# script in unity to

process the CSV list, sort it in temporal order (in our case we used the frame index, the first

column of the CSV list, to sort), and store the focal length, Quaternion angle, and position of a

series of cameras into a list of objects in a class called “Mycamera”. Then the update() function

assigns the Main Camera in unity the corresponding position, angle and focal length from the

list of cameras at different moments. In this manner, we managed to reconstruct the camera

movement in shot 17th and 18th.

 Fig.11 camera csv file exported from VisualSFM (in the format of NVM)

 Fig.12 main parts of unity C# code to process the CSV data and control the Main Camera

In the meantime, for the static shots 16th and 19th, we place the camera in corresponding

positions and angles manually in unity for the same period as in the movie. Eventually, we

compiled the two parts of csv files and achieved a continuous mapping from the movie clip to

our unity architectural visualization application.

 Fig.13 unity minimalist architectural scene setup as a demonstration

 Fig.14 screenshot of the result video: transfer of film temporality into architectural visualization

In the future, we hope this technology can be applied in the VR realm for audiences to

experience a building/space through the lens of a film. The camera motion sequence from an

outstanding film can thus to translated into a new setting. Also, this can be utilized as a means

of architectural design presentation for designers and architects.

Another potential would be to investigate other film properties such as light, color, or sound

from a temporal angle, and then translate those aspects of film temporality into new areas.

